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Let {X,: t~>0} denote random walk in the random waiting time model, i.e., 
simple random walk with jump rate w-~(X,), where {w(x): x~Z a} is an i.i.d. 
random field. We show that (under some mild conditions) the intermediate 
scattering function F(q,t)=Eo e~qx' (qER d) is completely monotonic in t 
(E0 denotes double expectation w.r.t, walk and field). We also show that the 
dynamic structure factor S(q, co) = 2 ~" cos(~ot) F(q, t) dt exists for r 
and is strictly positive. In d= 1, 2 it diverges as I/]wl Ira, resp. -ln([col), in 
the limit co--, 0; in d>~ 3 its limit value is strictly larger than expected from 
hydrodynamics. This and further results support the conclusion that the 
hydrodynamic region is limited to small q and small oJ such that Icol ,> D Iq[", 
where D is the diffusion constant. 

KEY WORDS: Random walk in random environment; dynamic structure 
factor; hydrodynamic limit; long-time tail. 

1. I N T R O D U C T I O N  A N D  S T A T E M E N T  OF THE RESULTS 

An i m p o r t a n t  q u a n t i t y  in the  s tudy  of  l iquids  is the (self-part  of  the)  

dynamic  s tructure  f a c t o r  S(q,  o9).('~ This  q u a n t i t y  m o n i t o r s  the m o t i o n  o f  a 

t racer  par t ic le  in the l iquid.  In g o o d  a p p r o x i m a t i o n  the par t ic le  pe r fo rms  

B r o w n i a n  m o t i o n  wi th  diffusion cons t an t  D,  t2~ which  impl ies  

with 

S(q,  o9) ~. So(q, o9) ( 1.1 ) 

2DFo(q)  (1.2) 
So(q, 09) - D2Fo(q)2 + 092 
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where Fo(q) equals Iq12/2d for Brownian motion. Measurements of S(q, 09) 
by means of neutron scattering on liquids t3) show that (1.1) is verified 
within 10% accuracy. The small discrepancies can be understood because 
one expects that, as q--* 0 and co--* 0, 

S(q, 09) ~ z(co) So(q, co) (1.3) 

where z(o~) is proportional to the Fourier transform of the velocity 
autocorrelation function (VACF) (see ref. 4, Chapter 1 1 ). The long-time tail 
(LTT) in the VACF, if present, produces a nonanalyticity in z(og) at 
o9=0. (5~ The region of validity of (1.3) is called the hydrodynamic region. 
Montfrooij and de Schepper (6~ have argued that (1.3) is in fact a good 
approximation if and only if Io~1 is small but not too small, namely 

2D Iq12~ Icol ,~ 1 (1.4a) 

The region where 

leol ~ 2 D  Iq12,~ 1 (1.4b) 

then corresponds to the static limit. The difference between results in the 
static limit and in the hydrodynamic limit is investigated in the present 
paper. The distinction between them is of experimental relevance and leads 
to the paradoxical statement that measurements on a too slow time scale 
deviate from hydrodynamics. 

A LTT can also occur in models of random walk in random environ- 
ment (RWRE), though in a less pronounced way (a t-5/2-decay in time t 
instead of the t-3/2-decay observed in liquids). In the model studied here 
there is no LTT correction to diffusion. As a consequence the function _-(09) 
in (1.3) is identically one. Still, the correction to (1.3) for finite q and 09 is 
such that the results in the static and in the hydrodynamic limits disagree 
(see Theorems 2 and 3 below). In fact, in d =  1, 2 the correction term 
diverges in the static limit, while in d ~> 3 it converges to a nonvanishing 
constant. 

1.1.  M o d e l  

In the present paper we continue our study of the random waiting 
time model. 17"8~ Let 

w=  {w(x): x e  Z a} (1.5) 
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be a collection of random variables taking values in (0, oo) according to an 
i.i.d, distribution p satisfying 

f w p(dw) < oo (1.6a) I(0) I 

f wZ(O) #(dw) < oo ( 1.6b) 

Given w, let X={X,:t>~O} be simple random walk with jump rate 
w-~(X,). Then the random waiting time model is defined as the combined 
process (X, w). This is an example of RWRE. 

Let M and V 2 denote mean and variance of w(0) under p: 

M = f w(O) p(dw) 

V 2 = f [w(0) - M]211(dw) 

(1.7a) 

(1.7b) 

Let Po denote the probability measure defined by 

/ao(dw ) = w(--~)p(dw) (1.8) 

Then Po is stationary for the environment process associated with 
{ X,: t I> O} (starting at Xo = 0). ~8~ Let ~: and Eo denote double expectation 
w.r.t. {X,: t>~O} and w.r.t, w distributed according to p, resp. po. 

Given the configuration w, let p',V(x, y) denote the probability that the 
walk moves from x to y in time t. It is easy to show that the detailed 
balance condition holds: 

w(O) p',v(O,x)=w(x)p~'(x,O), t>~O, xe7/a (1.9) 

1.2. Definit ions 

For more background on the following definitions the reader is 
referred to refs. 9-11. The intermediate scattering function F(q, t) is given by 

F(q, t)=E_o e~qx', q e R  d (1.10) 
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The dynamic scattering function, also called the dynamic structure factor, is 
given by 

f? S(q, o9) = 2 cos(ogt)F(q,t)dt,  a~eR, qe l~  d (1.11) 

whenever the integral converges. The form factor Fo is given by 

Fo(q) = ~ p(O, x)( 1 - eiqx), q e R d 
x c Z  d 

2 ~ qi 
= d  i : ,  sin2--2 (1.12) 

Here, p(x, y) denotes the transition kernel of simple random walk, i.e., 
p(x, y) = 1/2d if I x -y1  = 1 and zero otherwise. 

1.3. R e s u l t s  

Throughout the paper we assume that there exists a > 0 such that 
p(w(0) t> a ) =  1. This is a technical condition which will be needed in the 
proofs. We have three theorems. 

Our first result reads: 

Theorem 1. F(q, t) is completely monotonic in t, for every q. 

Theorem 1 implies that there exists a representation of F(q, t) as the 
Laplace transform of a positive measure. More precisely, by Bernstein's 
theorem (see ref. 12, Theorem 12a, Section IV.12) there exists a non- 
decreasing right-continuous function % such that for all t/> 0 

t) = f o  e-'~t dtxq(,~) (1.13) F(q, 

Incidentally, in the physics literature the existence of this representa- 
tion is always assumed when discussing real-time correlation functions, e.g., 
in dynamic light scattering experiments. Often the approximation F(q, t) ~- 
e x p ( - D  Iql 2 t/2d) is used, with D the diffusion constant. Now. for the 
continuous-time simple random walk with mean exponential waiting time 
D -~ one has 

F( q, t) = e - DF~ (1.14) 

which is obviously completely monotonic in t. However, for the discrete- 
time simple random walk one has ~-eiqX~ which is not a 
positive function. Therefore Theorem 1 is not a trivial property. In fact, 
it is essential in the proof of theorems 2 and 3 below. 
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From (1.11) and (1.13) it follows that S(q, o9) exists for 09~0 and has 
the often-used representation 

f~' do~q( ft ) (1.15) 
22 

S(q, 09) = 22 + 092 

In particular, there follows 

I09'l >>.1091=~. S(q, 09) >~S(q, 09') >~(09z/09'z) S(q, 09) (1.16) 

which implies continuity of co ~ S(q, co) for o9 4= 0. 
As a consequence of Theorem 1, the behavior of 

I o  ei-"F(q, t) dt= Io  21~izdC%(2) (1.17) 

as z ~ 0 in {z e C: Im z/> 0} depends on the asymptotics of 0%(2) as 2 ---, 0, 
which can be derived from the behavior of (1.17) as z ~ 0  along the 
imaginary axis. This important fact is used to prove our second result, 
which concerns S(q, co) in the static region. 

Theorem 2. Let G(z) denote the Green's function of simple ran- 
dom walk on 7/d, i.e., G(z)=Z,>~oZ"p,(O, 0) with p,(x, y) the probability 
that the walk moves from x to y in n steps. Then for every q such that 
Fo( q ) :~ 0 

lim F(q, t)=O (1.18a) 

and 

f 1 
S(q, o9) = 2 Re IM_lFo(q) + i09 

as c o ~ 0  in R. 

+ -M [ 1 +~176 G 1 + / - ~  (1.18b) 

Incidentally, one cannot expect an easy proof of (l.18a), because 
F(q, t) decays algebraically in t due to the presence of the LTT. An easy 
inequality which follows from Theorem 1 (and which will be proved at the 
end of Section 2) is 

F(q, t) >1 e -oro(q), (1.19) 

Since for z ~ 0  in {zeC:  Rez~>0} 

d =  1: G(1 - z ) ~ ( 1 / 2 z )  1/2 

d = 2 :  G(1 - z ) ~  -(1/lr)  In z 

d>~3: G ( 1 - z ) ~ G ( I )  
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there follows from (l.18b) as co ~ 0 

V 2 1 
d =  1: S(q, co)= M (M Icol) '/2 + ~ Icol '/'-) (1.20a) 

V 2 1 
d = 2 :  S(q, co) = - 2  ~ ~ ln(M Icol) + o(ln(Icol)) (1.20b) 

d>~3: S(q, co)=2 M _ F F o ( q ) + - ~ G ( 1 )  +o(co ~ (1.20c) 

Our third and final result concerns S(q, co) in the hydrodynamic 
region. Using the central limit theorem of refs. 13 and 14, one can show 
that the rescaled random walk 

(eX~-,,),>~o (1.21) 

as e --* 0 converges weakly in path space to Brownian motion with diffusion 
constant D = M-1. This implies that 

e2S(eq, e2co) = So(q, 09) + o(e ~ ( 1.22) 

with So(q, co) given by (1.2). The latter result can be sharpened to: 

Theorem 3. As q--~ 0 

S(q, co) .,. So(q, co) (1.23) 

uniformly inside the region 

otDFo(q) p <~ ]col (1.24) 

for any 0t > 0 and 0 < fl < 1. 

The condition a > 0  is necessary as is evident from Theorem 2. 
Equation (1.22) is implied by Theorem 3 because of (1.16). 

2. PROOF OF THEOREM 1 and (1.19) 

We start with two preparatory sections, Sections 2.1 and 2.2, in which 
we use some Hilbert space techniques. In Sections 2.3 and 2.4 we prove 
Theorem 1 and (1.19). 

2.1. Hilbert Space Decomposition 

Let us denote by p, the function 

p,: (x, w) ~ p~'(O, x) (2.1) 



Dynamic Structure Factor in a Random Diffusion Model 1273 

and by ~ the linear space spanned by the set {p,: t~>O}. It is natural to 
consider the inner product ( . , . )  on ~ defined by 

(f, g)= f Po(dw) ~.f(x,  w) g(x, w) (2.2) 
x 

and to construct a Hilbert space ~vt ~ by completion of ~ w.r.t. ( . , . ) .  
However, in what follows we need an integral decomposition of ~f~ into 
wavevector-dependent Hilbert spaces ~q. 

Introduce the (degenerate) sesquilinear form (., .)q defined by 

(f' g)q= f l'zo(dw) E eiq(~'-Yf( x, w) g(y, w) (2.3) 
X ,  y 

Let ~q denote the Hilbert space obtained by dividing out the null space ./ffq 
o f ( . , . )q  and completing N/~Cq w.r.t. ( . , .)q. 

L e m m a  2.1. For all s, t~>0 

(p,, p,)q = Eo eiqx~'+' (2.4) 

Proof. One has (recall (1.8)) 

~-o eiqx'§ f  ,o(dw) ' -  ,v = e p s + l ( O , x )  
x 

=~fk t (dw)  w(O)Zeiqx~"p;(O,y)p;(y,x) (2.5) 
x y 

Using detailed balance (1.9), one obtains 

~_oeiqX,+, 1 f = ~  /.t(dw)~e'q"~w(y)p'~"(y,O)p;(y,x) (2.6) 
X ) '  

Using translation invariance of p, together with the observation that 
r _ y w w w p~ (y, O)=ps(O, - y )  and p:-, 'W(y,x)=p,(O,x-y),  one gets 

[F_oeiq,V,+ ' 1 f = ~  ~u(dw) w(O) ~ eiqXpw(O, - y )  pT(O, x--y)  

= fpo(dw) ~ e-'q(x-Y)p'~"(O, x)p',~(0, y) 
X , y  

= (P,, Ps)q = (Ps, P,)q �9 (2.7) 

An immediate consequence of (2.4) is that Eoe~qX'= (P,/2, P,/2)q is 
nonnegative. The following lemma allows us to relate results for ~.o e~qx' 
and ~_e iqx~. 
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Lemma 2.2. For all t />0 

0 Ol F-~ = - M -  IFo(q) Ee-iqXt (2.8) 

Proof. The function p, satisfies the equation 

1 p:(O, x)= ~ ~ p;"(o, y)[p(y, x ) -  ~,.x] (2.9) 

Let fi:w denote expectation w.r.t, the random walk in the fixed environ- 
ment w. Using (2.9), one calculates (recall (1.12)) 

L~weiqX'=~--tt2eiqXpT(O'ot x) 
x 

_ 1 " 0 =~e~,- - - - - ; -~p, ' ( ,  y)[p(y,x) 
y wry) 

= --Fo(q) ~ e'qY w--~ P~(O, Y) 

1 
= - - F o ( q )  ~ w - - e  iqX, w(X,) 

- 3 y . ~ ]  

(2.10) 

Integrating (2.10) over /~o, using detailed balance (1.9) and using the 
translation invariance of/l ,  one gets (2.8). �9 

Lemma 2.3. For nt> 1 

~t. =o(p,, Po)q <.Fo(q)a-'2 "-1 (2.11) 

where a is the constant such that/z(w(O) ~>a)= 1. 

Proof. Using (2.4) and (2.9), one calculates 

(p,, po)q ~o(dw) ~ dqx p.(O, x) 

= ( - 1 )" Fo(q) f I~o(dw) 

e 'qx'  1 

E w(x,----5) ax,.x2 w(x2) 
Xh..., Xn- I 

1 
x ... x Ax,_,.o w(O) (2.12) 
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where zl ...... = ~  ..... --p(x, y). This implies (2.11) because o f p ( w ( 0 ) ~ > a ) =  1 
and ~.~ lAx, y[ ~ 2  for all y. �9 

2.2. A Contract ing  Semigroup  

We show now that a contracting semigroup {S(t): t 1> 0} is defined by 
S(t)p,,=p,+,,, t, t'>>.O. We do not know how to show this in a direct 
manner and so we proceed as follows. 

Proposi t ion 2.4. There exists a self-adjoint operator  L on ~q 
satisfying: 

(i) ~ c Dom(L) .  

(ii) (O/Ss)(p~, p,)q=(Lps , p,)q for all s, t>~O. 

(iii) p,  = eL'po for all t/> O. 

Proof. (i), (ii) Let E,,. be as before. F rom (2.3) it follows that 

O 0 
f po(dw) E,v(e iqx') ~:w(e - i q x ' )  (2.13) Os (p'' p')q =as 

Via (2.10), this becomes 

(Ps, Pt)q = -Fo(q) f llo(dw) E,,, e iqx" E,,,(e -iqx') 

By Schwarz's inequality therefore 

(2.14) 

where again a is the constant such that ,a(w(O)>~a)= 1. Hence the linear 
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map Z, -2 ;p , ,~  (O/Os)(ps, ~ i ~ , i P t , )  is continuous. Therefore, by Riesz's 
theorem, there exists a function r L in ~q such that 

0 
tgs(ps, Pt)q=(rls, p,)q for all s,t>~O (2.16) 

Which clearly satisfies II~sllq ~ Fo(q) a-l .  
From Lemma 2.1 it follows that (r L, Pt)q=(ps, vl,) q for all s, t>~0. 

Hence Y~iA~p,,=0 implies Z~ 2 i r l t i = O  for any finite linear combination. 
Therefore the map L defined by Lp,=vl, extends to a symmetric linear 
operator with domain ~ ,  and extends further to a self-adjoint operator 
on ~q. 

(iii) From Lemma 2.3 it follows that Po belongs to the analytic 
domain of L. Hence 

On $~0 (Lnpo, P,)q=~s~ (Ps, Pt)q for all n~>O (2.17) 

This implies e~po = Ps. �9 

2.3. Proof  of T h e o r e m  1 

From Lemma 2.1, Proposition 2.4 and spectral theory it follows that 
there exists a nondecreasing right-continuous function % on R such that 

F(q, t) = [[-o(e iqX') = (eL'po, PO)q = f e-X' do(q(~) (2.18) 
R 

Because the I.h.s. of the above expression is obviously bounded as t --* ~ ,  
the support of % is a subset of R +. Hence (2.18) is completely monotonic 
in t. �9 

2.4. Proof  of (1 .19)  

The proof runs via two more lemmas. 

L e m m a  2.5. t ~ EeiqX'/F(q, t) is nonincreasing. Hence 

Ee iqx' ~ F(q, t) (2.19) 
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t ~ F(q, t) is completely monotonic on [0, oo) and hence log- Proof. 
convex. This implies 

02 0 Ee iqx' 
0 ~< ~5 ln(F(q, t)) = -DFo(q) Ot F(q, t) (2.20) 

where we use (2.8) with M -1 = D  and note that Ee-ioX'=Ee iqx'. �9 

Lemma 2.6. t ~ eDF~ t) is nondecreasing. 

Proof. Let t/> to t> 0. From (1.13) there follows by Jensen's inequality 

[ fo ] F(q, t)/F(q, to)~>exp - ( t - t o )  2e-~'~ do~q(2)/F(q, to) 

O F  , = e x p [ ( t - t o ) ~ 0  (q to)/F(q, to) 1 (2.21) 

By (2.8) and (2.19) this becomes 

F(q, t)/F(q, to)>>, exp[ - ( t -  to) DFo(q) Ee~qX'o/F(q, to) ] 

>~exp[-(t-to)DFo(q) ] �9 (2.22) 

Lemma 2.6 implies (1.19). 

3. P R O O F  OF T H E O R E M  2 

In this section we make an expansion of the Laplace transform of 
Ee ~qx' for small 2 and fixed q. The main result is given in Proposition 3.3 
below and leads immediately to the proof of Theorem 2. 

3.1. T w o  P r e p a r a t o r y  Lemmas 

First, we rewrite the Laplace transform in terms of quantities which 
depend only on the underlying simple random walk. Let E r denote expec- 
tation w.r.t, to the discrete-time simple random walk Y= (}',),>/o starting 
at Yo = 0. Denote the local time of Y at site x after k steps by 

k 

ly(x ,k)= y" l l r ,=xl  (3.1) 
n = 0  

Lemma 3.1] For R e 2 > 0  

e-~'dEe 'qx'= ~ Er (eiqn§ (3.2) 
k>~O x 
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with 

/(2, l) = ;12(dw)[ 1 + 2w(O)] - /  (3.3) 

Proof. Condition on the environment w and on the embedded walk 
Y (which is the discrete-time skeleton of our continuous-time RWRE X). 
Let To = 0 and let Tk denote the time of the k th step, k = 1, 2 ..... The prob- 
ability that Tk ~< t equals the probability that the sum of k independent 
exponential waiting times with averages w(Yo), w(Yi )  ..... w ( Y , _  1) is 
smaller than or equal to t. Hence we obtain 

f0 ~ k--I l e-~'dP,, ,(T*<~tl  Y)= l-I l + 2 w ( Y , , )  (k~>l) (3.4) 
m=0 

Combining this with the identity 

p..(x,=x)= Z n:,.(~,. ,=., .jpw(r,.~<t<r,+, i ~) 
k>~O 

(3.5) 

we obtain, after a straightforward calculation, 

f0 c�84 'f0 ~c�84 
e -~' d~:,,, e iqX' = 2 eiqx e -~' dP, . (X,  = x) 

x 

[ 1 ]  
= ~ r-r (e'qv~+'-eiqv*) 1-[ l+;tw(Y,,,) 

k~0 m=0 

Now note that 

(3.6) 

k 1 
I-[ 1 + 2W(Ym) =l-[ [1 +2w(x) ]  -'y'x'k> (3.7) 

m=O x 

Hence, by averaging (3.6) over w and using the i.i.d, property of 
{w(x):xe~_ a} we obtain (3.2). �9 

Second, we formulate a large-deviation estimate. 

Lemma 3.2. For any 6 e (0, 1 ) there exist positive constants L and 
K such that for all k ~> 0 

P(sup I t (x ,  k) >1 U l +zv2) <~ Le _r~.,,,4 (3.8) 
g 

Proof. See ref. 8, Lemma 1. �9 
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3.2. Asymptotic Expansion 

The basic result of the present section is the following. 

Proposition 3.3.  F o r / l ~ 0  along the reals 

f ;  e-~' dE e iqX' 

Proof. 

Step 1. 
parts: 

Fo(q) 1 + G (3.9) 
Fo(q) + 2M Fo(q) + 2M 

The proof  consists of three steps. 

Pick 0t> 1 and split the sum appearing in (3.2) into two 

L~.-,j 
Z = Z + ~, (3.10) 

k~>O k = O  k=L2 -aJ+ l  

The second sum in (3.10) goes to zero as 2~0 faster than any poly- 
nomial. To see why, substitute the estimate [recall that/~(w(O) ~> a ) =  1 ] 

1(2, l)~<(1 + 2 a )  - /  (3.11) 

and the identity 

~ l r ( x , k )=k  + l 

into (3.2) to get the upper bound 

(3.12) 

k = L 2 - ~ 3 +  1 ( 1 + 2a) k+ J = O(e-~"- ' )  (3.13) 

To prepare for the computat ion of the first sum in (3.10), pick 
f i e ( I / 2 ,  1) and let 

2 V k - {sup l r (x ,  k) ~< 2 - ~ }  (3.14) 
x 

Lemma 3.2 with (1 + 5)/2 = fl implies that 

)') , 3 , , ,  P V~" =P(VL,~-~ j <~Lexp(-KL2-~J 12rs-1~/4) 
O~<k 2 - a 3  

Hence, neglecting a term which as 2 ] 0 tends to zero faster than any poly- 
.~ under the expectation Er  in the nomial, we may insert the indicator ~ ~ 

first sum in (3.10). 
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Step 2. The standard estimate for Taylor expansion up to second 
order gives [ recall (1.7) ] 

I (2 ,1)=(1+2M)- '  {1+~V2221(1+1)+0((21)2)} (3.16) 

Assume that ~fl < 1. Then we obtain on the event V~ 

1(2, Iv(x, k)) = (1 + 2M) -t,.,.,.k, { 1 + �89 V2221r(x, k)[tr(x, k) + 1 ] + 0(2~ 

= ( 1 + 2 M ) - m x ' k l  

•189176 (3.17) 

where the o(2 ~ term tends to zero uniformly in k e  [0, L2-~/ ]  and x as 
2 ~ 0. Next assume that 2 -  m-mfl > 0. Then, via (3.12) and conditioned 
on the event V ~' (recall that k~<L2-~_l), k 

1-I 1(2, Iv(x, k)) 
x 

= ( 1  + 2 M )  - k - I  

= ( l + 2 M )  -k - I  { 

exp {1V2}~2[1 + o(~.~ 2 l r (x ,k )[ l r (x ,k )+ 1]} 
x 

l + ~ V222[ 1 + 0().~ ~, Ir(x, k)[lr(x, k) + 1 ]} 
x 

(3.18) 

Note that the factor [1 +o(2~ can be brought in front of the sum over 
x because it is uniform in x. 

Substituting (3.18) into (3.2), we arrive at the following intermediate 
result: 

f0  ~184 
e atd~_e'qX'=At(J.)+�89 +o()~~ A2(2) (3.19) 

with 

Al(2)= ~ (1 + ),M) -k- l  ~r(eiqrk+~--e iqYk) 
k ~ 0  

A2(2)= ~ ( l + 2 M ) - k - I B k ( 2 )  
k>_.0 

Bk(2 ) = ~ _ y  [(eiqYk+l giqYk) ~, ly(X, k)[lr(x, k) 
x 

+Ill 
(3.20) 
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Step 3. It remains to work out (3.20). Using that (recall (1.12)) 

Ere iqrk = [ 1 - Fo(q)] k (3.21) 

the A L-term can be evaluated explicitly. The result is 

Fo(q) 
A~(2) = (3.22) 

Fo( q) + AM 

The calculation of the A2-term is less obvious. By means of the identity 

~ l r ( x , k ) [ l v ( x , k ) + l ] = 2 ~  ~ ~ i r,=,.i ~l r,=xl (3.23) 
x x O<~i<~j<~k 

the Bk-terms can be written as 

B k ( 2 ) = 2  ~ ~ ~-v[(eiqr~+'--eiqrk)~Ir,=x}~{r,=.,.}] 
x O<~i<~j<~k 

= 2 ~  ~ ~_~r(e'qV"+'-'-e'qYk-Op~(O,x) pj_i(x,x) (3.24) 
x O<~i<~j<~k 

where ~:-~, denotes expectation w.r.t. Y starting at Yo=x and pk(x, y) 
denotes the probabil i ty that  Y moves from x to y in k steps. Because 

i[:.~eiqYk = ~_ yeiq( Y,~ + x) = eiqX~ veiqVk 

it follows via (3.21) that 

&_(;~) =2 y~ 
O<~i<~j<~k 

--2 Z 
O<~i<~j~k 

• [ 1 - F o ( q ) ]  ~ pj_AO, O) 
k k - - i  

= - 2 F o ( q )  ~ ~ [1--Fo(q)]k-Ypy(O, O) 
i=O j=O 

Next, define the truncated Green 's  function 

i 

Gi( '7 )  = E ---lpJ (0 ,  o )  
j = o  

Then 

g: v ( e  iqYk+' -J - -  e iqY~-') E v e i q L p j _  i(O, O) 

{ [ 1 - Fo(q)] ~ +~ - j -  [ 1 - Fo(q)] k -Y} 

k k k - i  

:k Y a,(:-')= E Y o) 
i=O i=O j=O 

(3.25) 

(3.26) 

(3.27) 

(3.28) 
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and hence, combining (3.20) and (3.26), we arrive at 

Fo(q) (1-Fo(q)'] "+z 
A2(2) = -2  1 -ro(q--~) k~o \ f~-2M ) 

Fo(q) 1 + 2M 
= --2 

1 - Fo(q) Fo(q) + 2M 

1 _--Fo(q)'~ i+! 
x E I+ MJ 

i>~O 

= --2 [Fo(q)+ 2M]2 G 

k 

G~([1- Fo(q) ] - ') 
i=O 

Gi (  [ 1 - F o ( q ) ]  - ' )  

(3.29) 

In the last line appears G(z)=G~(z), the Green's function of simple 
random walk. Putting (3.19), (3.22), and (3.29) together, we get (3.9). �9 

3.3. Proof of Theorem 2 

Assume Fo(q)r From (1.10), (2.8) and (3.9) it follows that 

: e- ;" dF( q, t) 

fo =-M-IFo(q)  e at[EeiqX' dt 

=-M-12-1Fo(q)[l+;:e-atdF_eiqX, 1 

- F o ( q ) + V  2 ( 1 ) 
=Fo(q)+ 2M --M 2[1+~176 1 ~  

This implies 

(3.30) 

and hence lim . . . .  F(q, t )=  0 (note that F(q, 0)=  1 and recall Theorem 1), 
which proves the first part of the theorem. 

Recalling (1.13), we see that (3.30) becomes 

d%(s)= 1 + ~ -  [1 +o(2~ G ~ (3.32) 
M-'Fo(q) + 2 

In d>~ 3 the r.h.s, of (3.32) converges as 2 ~ 0. Hence, because the l.h.s, is an 

lim e -x' dF(q, t) = -1  (3.31) 
, t to  
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absolutely convergent Laplace transform, we have (see ref. 15, Satz2, 
p. 157) 

f0 V2 ~im ~ ~ 1 1 + ~ G ( 1 ) ,  Re2~>0 (3.33) 
d ~ q ( S )  = M-1Fo(q)  

In particular, using (1.15), we get 

f; lim S(q, co) = lim 2 Re - - 1  deq(S) 
o~ ~ o ~o ~ o i ( o  + S 

2 V 2 
M - ' F o ( q )  + 2 -~- G(1 ) (3.34) 

which is (1.20c). 
In d =  1 the r.h.s, of (3.32) diverges like V2/M(2M2)  ~/2 as 2 J, 0 and the 

Tauberian theorem for Stieltjes transforms (ref. 12, Chapter V, Theorem 7) 
can be applied. One obtains 

2 V 2 is),~2 s,LO %(s) ~ -~ --~ (2M-  as (3.35) 

From (1.15) we have 

;o r S(q, 09) = dx e -x~" ~ 2se -xs" daq(S) (3.36) 
o o 

Inserting (3.35) and applying twice the Abelian theorem for Laplace trans- 
forms, one obtains (l.20a). 

In d =  2 expression (3.32) reads 

f :  1 V 2 1 
~ s d a q ( S )  = - ~ -  [1 + o(2~ -n ln(2) (3.37) 

Taking the derivative of (3.37) w.r.t. ;t is allowed because 

fo 2 --, (2 + s) 2 d%(s) 

asymptotically is a nonincreasing function which converges to a constant 
as 2 J. 0. By an Abelian argument this constant then necessarily equals 
V2/nM. By ref. 12, Chapter V, Theorem 7, it then follows that 

g 2 s 

OLq(S) ~ M n as s~0 (3.38) 

Proceeding as in d = 1, one obtains 

d 2 V 2 
~--~S(q, co)~ no.) M as co J,0 (3.39) 

The latter implies (l.20b), 
Eqs. (l.20a-c) prove the second part of the theorem. �9 

822/76/5-6-13 
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4. PROOF OF T H E O R E M  3 

Theorem 3 is in fact an easy consequence of Theorem 1. We need a 
preparatory lemma. 

L e m m a  4 . 1 .  p(w(O) f> a)  = 1 implies 

I :  cos(o9s) dE e iq'~' <~ - -  - -  
rc Fo(q) 

2a Io91 
(4.1) 

Proof.  By Lemma 2.2 and Theorem 1, [F_e iqx' is completely monotonic 
I" recall (1.10) ]. Hence, if o9 :/: 0, then 

I : '  cos(ogs)dg- e 'qx" <~ I~ '21'~ cos(ogs)dE eiqX" t 

<~ 1 --  Ee iqx"/21~l (4.2) 

On the other hand, from (2.10) it follows that 

0 1 
- -  - -  l e e  i q x '  = F o ( q )  E - -  e i qX '  

Ot w( X,)  

<~ a - I F o ( q )  (4.3) 

Moreover, by convexity of t --* e i q x '  it follows that 

t 0__ , g.eiqX, (4.4) 
[ F _ e i q X ' ~  1 + Ot = o 

Equations (4.3) and (4.4) together give 

/ t  
1 -- Ee iqXnal"l ~ a - l E o ( q )  2 Io91 (4.5) 

Equations (4.2) and (4.5) combine to give (4.1). �9 

P r o o f  o f  T h e o r e m  3. From (1.10) and (1.11), by doing two partial 
integrations and using Lemma 2.2, one obtains 

1 I- 
S(q,  09) = o9 -2DFo(q)  L 

It follows that (recall (1.2)) 

1 + cos(ogs) dE e iqx` (4.6) 

S(q, o 9 ) [ l + o g _ 2 D 2 F o ( q ) 2 ] I i + i : ' c o s ( o g s ) d E e i q X ,  l (4.7) 
So(q, o9) 
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If co is in the set defined by (1.24), then by Lemma 4.1 one obtains 

1 S(q, co) ~<F0(q)2~ t - p ' +  nFo(q) ' - a  
S0(q, co) ct- 2aaD 

which tends to zero as q--* 0. �9 

(4.8 
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